NET ZERO SOLUTION **PROVIDER**

ENERGY RECOVERY

Reuse: Waste Heat to Power

Organic Rankine Cycle

Waste Heat from Industry

- Geothermal
- Flue Gas from Incinerator/Thermal Oxidizer
- Steel Plant
- The plant with waste heat

- Cement
- Sugar Mill

Advantages

- No need of operators thus lower running cost
- No limitations and constraints on placement, better fitting available soil and production process requirements
- Higher amount of productive hours
- Easy maintenance
- No need of water consumption
- **Hight Sustainability**

- Possibility to exploit the maximum energy available from the process
- Low maintenance
- Higher Efficiency of the turbine
- Optimal match with the release curve and better operation at partial loads
- Lower power specific cost
- Lower operation and maintenance costs

Case study

Plant size

: 5MWe Application : Heat Recovery Gas Turbines

Heat Source Temperature

(Diathermic Oil)

Water or Cooling Agent

: 294°c -140.8°c

: Cold water from LNG

 Temperature Water : 5-38°c

Environmental Savings

<23,460tCO₂/y

: <7,497 TOE/y

ENERGY RECOVERY

Reuse: Waste Heat to Power

Waste Heat Recovery Unit

A reputation for engineering excellence, quality and responsiveness to individual client's expectations.

ENERGY RECOVERY

Reuse: Waste Heat to Power

Organic Rankine Cycle

Pure Cycle

Standard Package

Specification

Size : 5.8 x 2.3 x 3.5 m

Output Power: 272/280 kW

Frequency: 50/60Hz (Customer determine)

Voltage: 380 ~ 460V (Customer determine)

Heat Source : Steam
Heat Temperature : 101~150°C
Heat Flowrate : 2.5 ~ 5 t/h

CW inlet temperature: 25 ~ 35°C (Change with the ambient)

CW Flowrate: 300t/h (Delt T = 8°C, for each unit)

Empty Weight: 14 t / unit
Operating Weight: 17 t /unit

In the Specified conditions, the expected performances of TICA's ORC Purecycle 280 units are following:

	Hot Source				Cooling Water			Power Output	
	Inlet Temp. °C	Inlet Press. KPa.a	Outlet Temp. °C	Flow Rate t/h	Inlet Temp. °C	Outlet Temp. °C	Flow Rate t/h	Gross kW	Net kW
Unit 1	126	500	80.6	55	30	35	465	245.2	228
Unit 2	126	500	80.6	55	30	35	465	245.2	228
Unit 3	126	500	80.6	55	30	35	465	245.2	228
Total				165			1,395	735.6	684